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Abstract-The falling cylinder viscometer (FCV) has been investigated both theoretically and exper- 
imentally. Although the use of this instrument goes back to the early work of Bridgeman because of its 
suitability for high pressure measurements, a fundamental study of the flow field around the cylinder has 
not yet been reported. The study presented here allows the prediction of end effects without resorting to 
empirical corrections or instrument calibration. The investigation was carried out over a wide range of 
cylinder diameters and lengths and an operating parameter, the Geometry Number, has been defined which 
characterizes the FCV and is solely determined by the dimensionless cylinder diameter and length. A 
correlation equation from which the Geometry Number can be calculated is presented which can be used 
to design viscometers for particular applications. The agreement between the analytical and experimental 
results of the Geometry Number, the measured viscosity of standard fluids and the repeatability and 
accuracy are all within one percent. Both the theoretical analysis and experimental data indicate that falling 

cylinder viscometers based on the correlated equation can be accurate and absolute viscometers. 

INTRODUCTION 

THE FALLING cylinder viscometer consists of a cylinder 
with flat ends falling vertically in a fluid in the direc- 
tion of its longitudinal axis and along the axis of a 

cylindrical container called the system which contains 
the experimental fluid (Fig. 1). With an appropriate 
instrument theory, the fluid viscosity can be measured 
from the terminal velocity of the falling cylinder if the 
fluid and cylinder densities, the gravitational accel- 
eration and the cylinder and system geometries are 

known. 
Pervious applications of the instrument have 

suffered from the disadvantage that the exact effect of 
the fIow around the cylinder ends was unknown and 

thus the end shear and pressure forces could not be 
evaluated. With the emergence of computational 
methods, the flow field around the cylinder ends can 

now be clarified with the result that the FCV can 
become an absolute instrument. 

The falling cylinder viscometer can be traced back 
to the early work of Bridgeman [l] who utilized it for 

measuring the effect of pressure on viscosity. Some 30 
years later Lohrenz [2] and Lohrenz et al. [3] derived 
a mathematical theory of the FCV by assuming no 
end effects, in essence, a cylinder of infinite length. 

Using the same model, Ashore and his co-workers [4] 
and Eichstadt and Swift [5] extended the theoretical 
development to the area of non-Newtonian fluids such 
as power law, Ellis and Bingham plastic models. 

Because of the lack of knowledge of end effects, the 
FCV was not treated as an absolute instrument and 
Huang et al. [6] and others [7-141 found it necessary to 
calibrate their viscometers to account for end effects. 

Being aware of the fact that end effects were small 

as the cylinder diameter approached the container 
diameter, Lohrenz et al. [3] maintained a narrow gap 
between the cylinder and container to suppress end 
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FIG. 1. Schematic of falling cylinder viscometer and its coor- 
dinate system. 
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NOMENCLATURE 

cylinder diameter [m] 

end correction factor, Gr!Gr, 
Darcy friction factor, dp+id.x-* 
gravity acceleration [m so ‘1 

Geometry Number. (p, -p,),~R~j(~~,) 
see equation ( I 1) 
cylinder dimensionless radius, id/R, 

cylinder length [m] 

dimensionless cylinder length, I/R, 

length of calculation domain. I+4R, [m] 

dimensionless length of calculation 
domain, I+ +4 
pressure [N m ‘1 

pressure causing fluid motion. P+p,g 
[N m ‘1 

dimensionless pressure, p/(&u,‘) 
system (container) radius [m] 
radial coordinate [m] 
dimensionless radial coordinate, r/R, 

Reynolds number based on cylinder 

radius, ( ~pfu,d)/p 
Reynolds number based on system 

radius, (p,u,R,),“p 

velocity component in s direction in a 

stationary coordinate system [m s ‘1 
dimensionless velocity component in .Y 
direction in a stationary coordinate 

system, c’ju, 

11 velocity component in .Y direction in a 
moving coordinate system [m s ‘1 

u+ dimensionless velocity, U/U, 

u, cylinder terminal velocity [m s ‘1 
V cylinder volume [m’] 
1 velocity component in r direction in a 

moving coordinate system [m s ‘1 
[:+ dimensionless velocity, I./U, 
.r .Y coordinate [m] 
s?+ dimensionless x coordinate, .u/ R,. 

Greek symbols 

/L viscosity [cP or mNs m ‘1 

P density [kg m ‘1. 

Subscripts 
A cylinder (front) botLom end 
B cylinder (back) top end 
c cylinder 
c experimental 
f fluid 
i ideal 
m measured 
n numerically calculated 

; 

regressed (correlated) 
system (container). 

effects. An immediate problem was that the cylinder 

tended to fall in an eccentric manner which caused 
significant measurement errors. This eccentricity error 
has been studied and verified by Chen ef al. [15] and 
Irving [ 161. 

Another approach to account for end effects was 
utilized by Park and Irvine [ 171 who called their device 
the falling needle viscometer. They attached hemi- 
spheres at either end of the cylinder and then added 
the classical Stokes drag for a sphere to the infinite 
length cylinder drag. This superposition method was 
successful in many of their measurements but left 

unanswered the magnitude of the wall shear at the 
cylinder sides at either end. 

A recent paper by Wehbch et al. [ 181 used the infinite 
length solution and evaluated the end effects by fitting 
an empirical equation to the theoretical results of 
Chen and Swift [I91 for small gaps and the exper- 
imental results of Park and Irvine [ 171 for large gaps. 
They obtained reasonable results in their specific 
measurements but once again the instrument is not 
absolute. 

The purpose of the present paper was to solve the 
flow field around the falling cylinder and with this 
knowledge of the pressure and shear fields to evaluate 

the falling cylinder end effects. An important part of 
the investigation was to confirm the theoretical results 

by experiments. Finally, a correlation equation is pre- 
sented to allow the design of a falling cylinder vis- 
cometer under a variety of operating conditions. 

ANALYSIS 

(a) The ideal model 

Because the ideal or infinite cylinder model will be 
used in this analysis for comparison with the actual 
model, a brief description of the ideal model is given 
below. 

The coordinate system is illustrated in Fig. I. In 
dimensionless form (see the Nomenclature) the momen- 
tum equation for the flow around the cylinder is given 

by 

(1) 

with boundary conditions 

U+(k) = - 1.0, U”(l) = 0. 

In order to account for the fluid pushed aside by 
the cylinder, the continuity equation becomes 
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FIG. 2. Reciprocal of ideal Geometry Number. 

s 1” k2 
U+r+dr+ = -. 

k 2 
(2) 

Once the cylinder reaches its terminal velocity, the 

difference between the gravitational and buoyancy 
forces is balanced by the pressure on the cylinder ends 
and the shear forces on the sides. A force balance on 
the cylinder yields 

Solving equations (1) and (2) by direct integration and 
evaluating the terms in equation (3) gives 

(PC - Pi-) de -2(1-k4) _ 
WI = k2[(l -k2)2+lnk(l -k4)] = Ge” 

where Ge, is called the ideal Geometry Number which 
is entirely determined by the geometry of the 
viscometer. Figure 2 shows the relation between l/Ge, 
and k and will be used later in choosing the proper 
viscometer geometry for a particular viscometer 
design. 

(b) The actual or correct model 

For the actual model, there must be a cor- 

responding Geometry Number, Ge, which satisfies 

Ge = (~c-~rlgR,Z 
PU, 

(4b) 

To calculate the actual flow field in the falling cyl- 
inder viscometer, it is necessary to solve two momen- 
tum equations and the differential continuity 
equation. A moving coordinate system shown in Fig. 

3 was chosen so that the cylinder was stationary and 

the fluid approached the cylinder with terminal vel- 

ocity u,. This allowed a simplification of the flow equa- 
tions. The set of dimensionless equation has the fol- 
lowing form 

a(u+u+) 1 a(u+v+r+) 
-+F art 

I ap+ = --_ 
ax+ 28x+ 

+,a,$ 
[ 

+rfo”r+ r ar+ 1 “(+““‘>] (5) 

a(u+u+)+La(0+0+r+) i ap+ 
ax+ r+ clr+ 2 Jr+ 

+L Re 
4 L 

$+$&(r+g)-$1 (6) 

1 a(v+r+) 
g+FF~ = 0 

with boundary conditions 

u+(O, r+) = 1 .O v+(O, r’) = 0 

U+(L+, r+) = 1.0 v+(L+, r+) = 0 

24+(x+, 1.0) = 1.0 0+(x+, 1.0) = 0 

g(x+,o) = 0 0+(x+, 0) = 0 

u+(x,+,O<r+dk)=O u+(x:,O<r+<k)=O 

u+(x$,O<r+,<k)=O v+(x,+,O<r+<k)=O 

u+(x,f d x+ d x;,k) = 0 0+(x,+ < x+ < xg+,k) = 0 

(8) 

and the dimensionless force balance, after considering 
the definition of the Geometry Number, becomes 

Ge = (PC - pr) @: 

W1 

ReRT k 
=I+ki s r+bZA -&Jdr+ 

0 

(9) 

A FORTRAN program using the SIMPLE algo- 
rithm [20] was developed to solve the momentum and 
continuity equations for the velocity and pressure 

fields. A pressure field was first guessed to calculate a 

FIG. 3. Coordinate system moving with the cylinder. 
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FIG. 4. Diagram of velocity vectors in the FCV. 

velocity field, then the obtained velocity field and the 
reformed continuity equation were used to correct the 
pressure field and the velocity field until satisfactory 
convergence was obtained. The final pressure field 
yields a velocity distribution that satisfies the con- 

tinuity equation everywhere. The calculation details 
are reported by Gui [21] and only the necessary results 

will be presented here. 
For a particular geometry, the program ends up 

with three matrices, the axial velocity, the radial vel- 
ocity and the pressure. Thus, all of the primitive vari- 

ables are available to determine the shear and pressure 
drag on the cylinder. As an example of the velocity 
field calculation, Fig. 4 shows the results for a FCV 
with /i = 0.25, !” = 10 and ReX = IO-‘. 

Once the overall drag is available, the numerical 
Geometry Number can be calculated from equation 
(9) and the final working equation for the viscometcr 
can be assembled. An often used term, the end cor- 
rection factor (ECP) can be defined as the ratio of the 
actual to the ideal Geometry Numbers 

EC-F=;,. 
I 

(10) 

El +- Ideal 
, I’ ..i 

Ftc;. 5. Shear rate variation on the cylinder wall 

This is convenient because the ideal Geometry Num- 
ber can be easily calculated from equation (4) and the 

ECF can then be used to correct the ideal Geometry 
Number for end effects. 

As an example of the shear stress calculations, Fig. 

5 shows the variation of the wall shear rate along the 
cylinder side. For comparison. the shear rate for the 
ideal model is also indicated in the figure. The shear 
rate variation on the ends can be seen which have an 

effect on the Geometry Number. The end shear rates 
are large but they quickly decay to the value cor- 
responding to the ideal case. This transition occurs 
over 4% of the cylinder length at I+ = IO. It was 
found that these end shear rate variations remain 
essentially the same for shorter or longer cylinders. 

This means that there arc smaller shear stress end 
effects on the Geometry Number for longer cylinders. 
These results agree quantitatively with the expcr- 
imental flow visualization measurements of Kim ef ill. 
[22] on the falling needle viscometer where the extent 

of the transition region was measured to be 3% of the 
needle length. 

The con~p~itationai results also revealed the impor- 
tant fact that there is a step pressure increase at the 
surface of the cylinder front end A and a step pressure 
decrease at the cylinder back end B. This means that 
the cylinder ends encounter a higher or lower pressure 

than their corresponding pressures in the ideal model. 
Figure 6 shows the pressure distribution along the 

i 

_1 
0 * 4 8 0 10 12 11 

x+ 
FIG. 6. Pressure increase and decrcase on cylinder ends. 
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Table I. The Ge,, Ge, and ECF, of FCV 

k Ge, Ge, ECF, 

0.02 1716.5 1741.6 1.0146 
0.05 399.90 415.05 1.0389 
0.10 151.24 157.86 1.0541 
0.25 63.50 67.43 1.0629 
0.50 90.06 94.41 1.0483 
0.75 475.10 487.70 1.0264 
0.90 6360.9 643 1.5 1.0110 
0.95 49 283.0 49 485.0 I .0041 

*Calculations are based on I’ = 10 and Re,< = lOm6. 

direction of the cylinder axis. In the figure the cal- 

culated pressure variation is plotted as a solid line 
while the ideal model pressure distribution is indicated 

by a dotted line. The end points, A and B, represent 
the pressures at the cylinder ends. 

It can be seen in this figure that the pressure increase 
and decrease at the cylinder ends are considerable 
compared with the total pressure drop across the cyl- 
inder in the ideal case. This leads to an actual total 

pressure drop across the cylinder 38% larger than in 
the ideal case at this k value (0.25). However, this 

increased pressure drop’s contribution to the 

Geometry Number is less than several percent due to 
the relatively small influence of the pressure drop on 
the Geometry Number. In general, the increase in 
pressure drop accounts for 2/3 of the total end effects 

on the Geometry Number. 
Table 1 shows the results of the calculations listing 

the Ge,, Ge, and ECF, for various values of the radius 
ratio, k. As seen in the table, the correction for end 
effects is of the order of 1.5% for small values of k, 
increases at intermediate k values to 6%, and 

decreases again at large k values, and then approaches 
zero as k tends to 1.0. It should be noted that the 
calculations reported in Table I are for a value of 
I+ = 10, which is a convenient size experimentally, 
and at a small Reynolds number in order to suppress 

inertial forces. The effect of Reynolds number on the 

results will be discussed below. 
In the calculations, the Reynolds number was taken 

to be small ( 10~mh) therefore the flow could be con- 
sidered to be Stokian. It is of great operational interest 
to determine the maximum Reynolds number for 

which the present analysis is applicable. This was done 
by increasing the Reynolds number and calculating 
the Geometry Number and comparing it with the 
Geometry Number at a Reynolds number of IOmh. 
Figure 7 shows the results of these calculations where 
the ordinate is defined as 

Ge+ = Ge(Re) 
Gel,,= ,e’ (11) 

As seen in the figure, the present model is applicable Keeping the FCV at constant temperature is impor- 
to a Reynolds number of the order 10. For larger tant, because a temperature difference of 1°C will 
values of the Reynolds number, the inertial forces cause the viscosity of oils to vary from l-IO%. For 
come into play. In Fig. 7 the value of k was chosen as this reason, two constant temperature circulators are 
0.25 which is the region where the inertia1 forces used to control the water jacket temperature. They 

FIG. 7. Effect of Reynolds number on Geometry Number. 

should have a maximum effect. These results are con- 

sistent with the experimental measurements reported 
by Park et al. [23] on the falling needle viscometer. 

EXPERIMENTAL APPARATUS 

In order to investigate the accuracy of the cal- 
culations made on the numerical model, measure- 

ments were carried out on a number of falling cyl- 
inders of different geometries and densities. The 
experimental apparatus included a container, a series 
of falling cylinders and peripheral facilities which 

either provided constant temperature in the system or 
measured the falling time. 

A schematic sketch of the apparatus is shown in 
Figure 8. The container is a precision quartz tube with 

a launcher at the top and a seal and drain at the 
bottom. The quartz tube was manufactured by the 
Wilmad Glass Company, Inc., NJ. The diameter of 
the tube is 0.01905 m with a tolerance of 5 x 10m6 m, 
and the length is 0.4 m. A water jacket with constant 

temperature circulating water provides a constant 
temperature working condition (25 f 0.02”C) in the 

system. A bubble level fixed on top of the viscometer 
monitors the verticality of the viscometer. The laun- 
cher maintains the cylinder at the container center 

before it starts to fall freely and, the clearance between 
the launcher and cylinder is 10e4 m. Immediately 
adjacent to the container are Hall magnetic sensors 
used to measure the falling time, during which the 

cylinder falls through a distance between two suc- 
cessive sensors. The falling cylinder has a disc magnet 
attached to its front end. (The time can also be mea- 
sured directly by a stopwatch if the fluid is trans- 
parent.) The top sensor starts the timer and the bot- 
tom one stops the timer. There are three independent 

measuring zones to confirm that terminal velocity 
occurred. The timer was manufactured by the J & L 
Instrument Company. The resolution of the timers is 

0.01 s. 
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2. Falling Cylinder 

3. Fluid to be Measured 

4. 4 Wire Resistance Thermometer 

5. Cylinder Launcher 

6. Constant Temp. Water Jacket 

7. Magnetic Sensors 

8. Level Marks 

I 

Refrgsrated constant GD”Sant Temperahlia 
Temparat”re Circulator Circurator THE SCHEMATIC OF THE EXPERIMENTAL APPARATUS 
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Firh ssls.iilic Pobdcnca Corprsli”” OF THE FALLING CYLINDER VISCOMETER 

Fro. 8. Experimental apparatus. 

are arranged in a cascade fashion. The first circulator 
provides the second one with a cooling water source 

which is set 5’C less than the waterjacket tem~rature. 
Thus, the second circulator can run under more stable 
conditions. 

The temperature measuring unit consists of a resist- 

ance thermometer (RTD) (100 Q at 2YC) and a digital 
multimeter. The RTD was calibrated against an 8163 

Leads and Northrup precision platinum resistance 
thermometer, which has an accuracy of O.OOl’C. Thus 
the RTD has an estimated accuracy of 0.015”C. The 

multimeter measures the resistance of the RTD. It has 
6 significant digits and a resolution of 0.001 s;1 which 

corresponds to a temperature change of 0.0025-C. 
The cylinders were made out of either solid rod or 

sealed tubes with a piece of heavy metal at the bottom 
to lower the center of gravity. Once a cylinder is 
dropped into the launcher, it will fall due to gravity. 
At low Reynolds numbers, the cylinder only requires 
a distance less than one container diameter to reach 
its terminal velocity [24. 251. The magnet, fixed at the 
bottom of the tube or cylinder, triggers the timer via 
the magnetic sensor and then stops the timer as it 

passes another sensor. The terminal velocity can then 
be calculated by dividing the distance between the 
successive sensors by the falling time recorded on the 
timer. 

In order to determine the general characteristics of 
the FCV, I3 cylinders were tested. The specifications 
of the experimental cylinders are listed in Table 2. As 
seen in the table, the k values varied from approxi- 
mately 0.2 to 0.95 and the dimensionless lengths from 
4.0 to 20. 

The cylinder diameters were measured either by a 
vernier or digital micrometer. The former had a scale 
increment of 2.5 x IO-’ m and with careful reading an 

accuracy of 5 x 10 -’ m. The latter had a resolution of 
IOY m. 

The cylinder densities were determined by weighing 
them in air and distilled water. The accuracy of the 

density measurements was estimated to be fO.OOO1 g 
cm-j with a repeatability of 0.005%. 

As long as the center of buoyancy for a cylinder is 

above the center of gravity and the cylinder diameter 
is less than 0.75, the falling cylinder is quite stable and 
remains in the center in a vertical position as it falls 

through the test fluid. At k values greater than 
ii = 0.75 the cylinders tend to become unstable and 
drift toward the container wail. For very large k 
values, six tiny guides were affixed on the cylinder 
with sizes of 0.45 mm (high) x 1.5 mm”. The effect of 
these guides on viscosity measurexnents was found to 

be negligible. 

EXPERIMENTAL RESULTS 

Viscosities were measured between 20 and 1400 cP 

using standard fluids from the Cannon Standard 
Instrument Company specified to be accurate within 
one percent (State College, PA, U.S.A.). Since the 
main purpose of the experiments was to verify the 
calculated Geometry Number, it was desirable to sup- 
press all other possible errors. Thus the standard fluid 
viscosities were selected so as to have slowly falling 
cylinders in order to have small errors in the total 
falling time. 
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Table 2. Specifications of the experimental falling cylinders 
--._ 

do x IO3 
Cylinder (m) 

CA1 3.98 
CA2 3.98 
CA3 3.94 
CA4 3.97 

CBI 10.12 
CB2 10.12 
CB3 10.12 

cc1 14.08 
cc2 14.08 
cc3 14.06 

CD1 18.116 
CD2 18.094 
CD3 18.103 

System diameter = 0.01905 m. 

Ix lo3 

(m) 

7.112 
8.89 

10.0 
17.0 

3.99 
9.96 

16.97 

4.00 
10.01 
16.99 

47.74 
95.38 

189.4 

k 

0.2089 
0.2089 
0.2067 
0.2084 

0.5311 
0.53 10 
0.5310 

0.1392 
0.739 1 
0.7382 

0.95096 
0.94982 
0.95036 

___.---__ 

__._ 

I+ 

7.47 
9.34 

10.5 
17.85 

4.19 
10.50 
17.81 

4.20 
10.30 
17.83 

5.01 
10.00 
19.89 

Ge, 

70.566 
70.554 
71.090 
71.064 

97.354 
97.310 
97.310 

412.51 
412.06 
408.03 

52240 
48791 
50385 

41 

Pr 
(kg m-s) 

1681.4 
1455.2 
1512.9 
lSl2.9 

1563.2 
1526.8 
1400.0 

1415.5 
1282.0 
1179.1 

2909. I 
2779.0 
2735.8 

Table 3. ~ompa~son of experimental and numerical results 
--_-- -__.-... .--_- 

1,x lo2 
Tube (m) Rex 10’ Ge, Ge, 
-.. .- 

CAI 19.0 29.48 8.0 76.266 76.481 
CA2 4.928 10.55 5.5 75.043 74.756 
CA3 10.0 19.50 6.5 75.406 75.391 
CA4 5.0 9.55s 4.5 73.458 73.351 

CBI 15.0 38.95 12.0 108.50 109.47 
CB2 10.0 25.69 8.0 101.81 101.91 
CB3 9.0 28.39 9.5 99.72 99.95 

CCI 15.0 203.37 3.0 441.65 441.29 
CC2 to.0 174.15 2.5 422.45 423.09 
CC3 IO.0 231.63 2.0 413.29 413.90 

CD1 4.928 42.92 29.5 53064 52 792 
CD2 10.0 85.52 30.0 48 804 48 979 
CD3 10.0 90.28 28.5 50 365 50 168 

-~ 

Ge, 

Get 

+0.28% 
-0.38% 
-0.06% 
-0.16% 

+O.SS% 
+0.09% 
+0.23% 

- 0.08% 
+0.15% 
+0.15% 

-0.51% 
+0.36% 
- 0.39% 

(2, 
1426 
1426 
1426 
1426 

1426 
1426 
1426 

I426 
1426 
1426 

29.96 
29.96 
29.96 

1422 0.9972 
1431 1.0038 
1427 I .0006 
1428 1.0015 

1413 0.9912 
1425 0.9991 
1423 0.9977 

1427 1.0008 
1424 0.9985 
1424 0.9985 

30.11 1.005 1 
29.85 0.9964 
30.08 1.0039 

The density of the high viscosity fluid is 892.9 kg m-j. 
The density of the low viscosity fluid is 856.4 kg m-‘. 

Table 3 shows the results of the experiments on the for cylinder series CD with a k value of approximately 
falling cylinders. Listed are the Reynolds numbers. 0.95, the ECF is quite small. However, it must be 
the calculated and experimental Geometry Numbers, remembered that such large k values require guides to 
the standard and measured viscosities and their ratio, maintain the cylinder trajectory along the central axis 
11’. Each point is the average of three runs. and this complicates the construction of the cylinders. 

DISCUSSION OF RESULTS 

From Table 3, it is seen that the agreement between 
the calculated and measured Geometry Numbers is 
better than fl% and usually better than f&S%. 
This is essentially the same as the agreement between 
the measured and standard viscosities. 

The measurements were also used to investigate the 
effect of cylinder length on the end correction factor 
as shown in Fig. 9. As seen in the figure as I+ increases, 
the cylinder approaches the ideal model and thus the 
fX’Pis reduced. It is of particular interest to note that 

On the basis of the results shown in Fig. 9 and 
considering other factors such as inconvenient cyl- 
inder lengths, it is recommended that I+ = 10 is a 
suitable value for the falling cylinders. 

A series of runs were atso made with all of the 
cylinders to determine the reproducibility of the vis- 
cosity measurements. The results are tabulated in 
Table 4 and shown graphically in Fig. 10. It is seen 
that the reproducibility for most of the runs is f 0.5%. 

ERROR ANALYSIS 

A detailed error analysis was conducted on the 
Geometry Number measurements and the details are 
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FIG. 10. Reproducibility and accuracy of FCV 

given in the thesis by Gui [21]. Possible errors were 
considered in the falling time and distance, cylinder 
and Ruid densities. container and cylinder diameters. 
container inclination, falling stability. cylinder ccccn- 
tricity and temperature variations. It was prcdictcd 
that the overall cxpcrimcntal errors wet-c from 0.5 to 

I.O%. These are somewhat larger than the results of 
the experiments on the standard fluids which were 

well within 1 %I. 

CORRELATION EQUATIONS 

One of the problems with numerical solutions is 

that the result is plethora of numbers which 

often are not continuous over sufficiently small 
increments of the field. This is true for the present 
solution where it is difficult to determine the Geometry 
Number or the EC’F for arbitrary values of the par- 
ameters k and I’ From a design point of view a 
correlated equation in terms of the two parameters k 
and I+ would be more convenient. Since the Geometry 
Number covers more than four orders of magnitude 
while the ECF only varies from 1 .O to 1. I, the latter 

was chosen to be correlated. 
After some trial and error an equation for the ECF 

was selected which has the form 

ECF = 1 +,f (k. /+ ) 

using the data in Tables 2 and 3, the following equa- 
tion was determined 

ECF= l+~o;~(0.74644+48.923k-139.9k’ 

IO 
+ 147.58k3-57.713k’)-0.00296 I -/+ 

C > 

for (l+ < 30). (12) 

Table 4. Accuracy and reproducibility (h = 0.95) 

(Cylinder Dl) 

Run Ms) p’ 

I 42.82 I .0032 
2 42.95 I .0062 
3 42.94 I .0060 
4 43.06 1.0088 
5 42.99 I ,007 1 

6 42.88 1.0046 
7 42.74 I .0013 
8 42.97 I .0067 
9 43.00 1.0074 

10 42.89 1.0048 
II 42.74 1.0013 
I2 42.06 I .0088 
13 42.87 I .0043 
14 43.00 I .0074 
15 42.83 1.0034 

Average 42.92 I .0054 

The falling distance is 0.04928 m. 

(Cylinder 02) (Cylinder fI3) 

/l(s) fit MS) /L ’ 

85.74 0.9955 90.42 I .0055 
85.52 0.9961 90.36 I .004x 
85.53 0.9962 90.23 I .0034 
85.55 0.9965 90.34 1.0046 
85.43 0.9951 90.14 I .0024 

85.43 0.9951 90.29 I .0040 
x5.43 0.9950 90.39 I .0052 
85.45 0.9953 90.33 I .0045 
X5.64 0.9954 90.30 1.0042 
85.74 0.9987 90.25 I .0036 

x5.53 0.9962 90.19 I .0029 
85.48 0.9956 90.30 I .0042 
85.56 0.9966 90.26 I .0037 
85.49 0.9958 90.14 I .0024 
85.50 0.9959 90.26 I .0037 

85.52 0.9961 90.2X I .0039 
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Table 5. Comparison of correlated and experimental ECFvalues 

Tube kZ I+ ECF, ECF, (ECF,- ECF,)/(ECF,) 

CA1 
CA2 
CA3 
CA4 

CBl 
CB2 
CB3 

cc1 
cc2 
cc3 

CD1 
CD2 
CD3 

0.2089 
0.2089 
0.2067 
0.2068 

0.5311 
0.5310 
0.5310 

0.7392 
0.7391 
0.7382 

0.95096 
0.94982 
0.95036 

7.467 
9.337 

10.50 
17.85 

4.190 
10.50 
17.81 

4.201 
10.30 
17.83 

5.012 
IO.00 
19.89 

1.0808 
I .0636 
I .0603 
1.0336 

1.1146 
1.0463 
1.02476 

1.07065 
1.02522 
1.0129 

1.0158 
I .0003 
0.9996 

The error brought in by the correlation is small (less 

than 0.25%) but the convenience is large. To verify 
the accuracy of the correlated equation directly with 
the experimental results, the correlation equation was 

applied to the experimental data listed in Tables 2 and 
3. The results are shown in Table 5. The agreement is 
good and except for one point, all of the differences 
are well within 0.5%. 

SELECTION OF SYSTEM GEOMETRY 

If the Geometry Number is large, the cylinder will 

fall slowly. If the Geometry Number is too small, 
inertial term will appear. In order to have a moderate 
falling time and no apparent inertial effects, an appro- 
priate Geometry Number must be selected. For a cer- 
tain fluid, there exists a range of Geometry Number 
which satisfy both constraints. 

It is known from Fig. 7 that if the Reynolds number 
is less than 1 .O, there are no appreciable inertial effects. 
If the Reynolds number is based on the container 

radius rather than the cylinder radius then this 
maximum Re,\ becomes approximately 10 if a 0.25% 

deviation is allowed (or 1 .O if no appreciable deviation 
is allowed). Therefore from equation (4) and the defi- 
nition of the system Reynolds number, the minimum 
value of Ge to avoid inertial effects is 

(13) 

From a manufacturing point of view, the system 
radius R, may be chosen to be around 1 .O cm and the 
length of the cylinder around 40 R,. Special attention 
should be given to the value selected for the cylinder 
density. Although it is natural to think that the cyl- 

inder density should be chosen just slightly higher 

than the fluid density so that the cylinder falls slowly, 
this can lead to errors because the cylinder and fluid 
densities enter into the equation as a density differ- 
ence. This important characteristic should be kept in 
mind in choosing a cylinder density. It is rec- 
ommended that the cylinder density be at least 0.05 g 
cmm3 larger than the fluid density. In this way, the 
error in the measured viscosity due to the error in 

1.0816 
I .0653 
1.0579 
I .0339 

1.1140 
I .0453 
1.0266 

I .0670 
1.027 1 
1.0156 

1.008 I 
1.0041 
1.0019 

+ 0.07% 
+0.16% 
-0.31% 
+0.03% 

-0.05% 
-0.10% 
+0.18% 

-0.34% 
+0.18% 
+0.27% 

-0.76% 
+0.38% 
+0.23% 

density difference will be less than 0.4% if the densities 

have an accuracy of 0.0001 g cm 3. 

SUMMARY 

1. A falling cylinder viscometer has been analyzed 
by obtaining a numerical solution of the flow field 
around the falling cylinder. With this information, 

an end correction factor was determined so that the 
simple solution for the infinitely long cylinder could 
be used to determine fluid viscosities. 

2. Experiments were performed to confirm the val- 
idity of the numerical solution with the result that 
standard fluid viscosities were measured with an accu- 

YdCy Of *0.5%. 
3. The critical Reynolds number to avoid inertial 

effects was calculated and recommendations are given 
for proper design to avoid inertial influences. 

4. In order to generalize the numerical solution, a 

correlation equation is presented for the end cor- 
rection factor to aid in the design of falling cylinder 
viscometers under a variety of operating conditions. 

5. Finally a number of practical suggestions are 
presented regarding fluid container and cylinder leng- 

ths, diameters and materials in order to design the 
most accurate and feasible system. With proper 
design, the falling cylinder viscometer can measure 
viscosities from 0.5 to 10 ’ ” cP. 
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